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Translational dynamics of a particle with anchored chains in entangled polymers
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We investigate the dynamics of a spherical particle of an arbitrary size immersed in entangled linear
polymers. In particular, we calculate analytically and numerically the velocity autocorrelation function
(VAF) of the particle, using the microscopic boundary layer model developed by Sung [ Physics of Com-
plex Fluids and Biological Systems, edited by W. Sung et al. Min Eum Sa Co, Seoul, 1993)]. The model
incorporates the short-range dynamical effect of the interface chains attached to the particle and simul-
taneously entangled with background chains, as well as the longer-range viscoelastic response from the
background, treated as a continuum. The VAF calculated therefrom manifests the interplay of elastic
response at short times and viscous relaxation via chain reptation at long times. The VAF at long times
decays very slowly with the long-time tails suppressed due to the entanglement constraint. On the other
hand, the constraint gives rise to an elastic response at short times, leading to enhanced caging of the
particle. We discuss the various modes of the particle dynamics that emerge as the particle size varies.

PACS number(s): 61.41.+e¢, 66.10.—x, 83.10.Nn, 83.20.Lr

I. INTRODUCTION

The entangled linear polymers either in melt or solu-
tion are characterized by an enormously slow relaxation.
This mode of slow dynamics is reptation, a large-scale
diffusion of the polymers in snakelike fashion along their
contours, by which the chains can be disengaged from the
entanglements [1,2]. The relaxation time 7, also called
the reptation time, goes like 7, <N® (§=3, theory;
8=3.4, experiment), where N is the number of Kuhn seg-
ments each of length b in a chain. For times much longer
than 75, the polymers flow as a liquid, while for times
much shorter than 7, they respond as an elastic solid
since each polymer remains caged to the neighboring
chains due to the entanglements. Depending upon the
chain length, the fascinating manifestation of this molec-
ular viscoelasticity can be observed on a macroscopic
time scale.

Now suppose that a particle is introduced into the long
entangled polymers with some chains anchored on its
surface. Then the particle motion is influenced by its
neighboring chains instantly and also by the viscoelastic
response of the more distant background polymers subse-
quently. We pose these questions: How is the transla-
tional motion of the particle described on various time
scales? How does the motion depend upon particle size,
polymer molecular weight, and degree of chain an-
chorage on the particle surface? These questions, let
alone their scientific significance, are relevant to many
practical situations including the industrial processing of
particle-polymer compounds.

We endeavor, in this paper, to answer the questions
posed above in an analytic manner by calculating the ve-
locity autocorrelation function (VAF) of the particle. To
this end, we employ a microscopic boundary layer (MBL)
model [3] recently developed by us to investigate steady-
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state particle diffusion in polymer liquids. The model, a
polymer-particle analogue of the Bethe-Peierls model [4],
describes the short-range interaction between particle
and the chains in its immediate neighborhood microscop-
ically using chain statistical dynamics, while it treats all
the distant chains as a continuum responding to the par-
ticle motion hydrodynamically. The hydrodynamic
response is then calculated in a way consistent with the
generalized boundary condition it must meet on the outer
surface of the boundary layer. We found that in an ear-
lier work the model reasonably yields the steady-state
particle diffusivity to be given as a sum of two contribu-
tions, one from disengagement of the anchored chains
and the other from hydrodynamic feedback of the distant
chains [5]. In order to study the underlying dynamics,
we will focus upon the velocity autocorrelation function
of the particle for times ranging from a short time 7,
denoting the onset of the entanglement constraints [2] to
long times larger than 7,. We will consider a spherical
particle of an arbitrary radius R and entangled polymers
of monodisperse chain length, which is also arbitrary.
We will confine ourselves here to the polymers in melt,
nevertheless, adaptation of the theory to solutions is pos-
sible to the limited cases in which solvent effect is negligi-
ble or easy to incorporate.

Our presentation of the paper is as follows: In Sec. II,
we recapitulate the basic elements of the microscopic
boundary layer model developed earlier and generalize
the model to accommodate the dynamic (nonsteady) situ-
ations we consider here. In Sec. III, we present the time-
dependent generalized hydrodynamics of the polymer
liquid treated as a viscoelastic continuum. We then solve
the coupled hydrodynamic equations that satisfy the gen-
eralized boundary condition and obtain the VAF, which
will be discussed in depth in Sec. IV. The results are
summarized in Sec. V.

1236 ©1995 The American Physical Society
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II. MICROSCOPIC BOUNDARY LAYER
AND GENERALIZED BOUNDARY CONDITION

Here we summarize briefly the essential ingredients of
the microscopic boundary layer (MBL) model developed
earlier by us [3,5] and introduce the basic parameters for
use in subsequent theoretical development. Also, we in-
corporate anew the effect of the chain disengagement into
the generalized boundary condition, which is our main
machinery for implementing viscoelastic response of po-
lymers.

In the MBL model, the dynamic effect of chains on the
particle is predominantly due to the elastically effective
surface chains (ESCs) which are defined as those an-
chored on the particle at one end, and entangled, for the
first time, with the background chains at the other (Fig.
1). Since the ESCs exclude other types of chains, we
model an ESC as a random walk that starts at a point
r,=R1, on the particle surface (R is the particle radius)
and terminates at the first entanglement without crossing
the surface on the way. The statistics of this particle-
avoiding walk was calculated assuming the ideality of the
chain and using the image method [3]. The end-to-end
distance probability density of the ESC with Ny segment
each with length b is given by

PNS°<(r2—R2)exp[—R;2(r—r0)2] , (1)

where R =y (2N,b?)/3 is a length characteristic of the
ESC, and r is the position of the entanglement from the
center of the particle.

We define the width a of the boundary layer to be the
most probable distance between the two ends of an ESC
(Fig. 1), i.e., a=|r*| —R, where r* is the r at which the
probability is at maximum. It is given by
2

Ri (@a+2R)—(a+R)=0. 2)

Particle

The a does not vary appreciably with R when R > 10R;
and approaches to the asymptotic value @ —(1/V'2)R,as
R — . Also, we obtain from the probability of an ESC
the entropic chain force fg necessary to extend its end by
an increment 8x away from the average separation

fs= ——kB TV lnPNS(r)

< (3)

=—K-6x .

Here K is the anisotropic spring constant tensor given by
(5]

K=kz T[VVInPy (r)]

r=r*=(R +a)a,

=K, 1+K i, ,
with
szT R
Ky= ) 4

°""RZ R+a (4a)
4k T 2

= Bz a (4b)
R2 | R,

In the case of a large particle in which R >>R;, or
R >>a,

2kpT
R?

Ko=K,= =K . (5)
Another important parameter in the model is the a, the
number of ESCs per unit area of the outer boundary sur-
face S, given by r =R +a. The a, presumed to be an in-
dependent variable, is fixed as a constant for simplicity in
our problem here.

In terms of these parameters, the force per unit area on
the particle by the ESCs drawn by 8x is given by

F=aK-6x . (6)

Polymer Continuum

FIG. 1. A schematic picture of the boundary layer model and an effective surface chain (ESC) which is attached on the surface and
entangled with a background chain during the reptation time. The a is the boundary layer size and S|, is the outer boundary.
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This is the case with the static situation wherein the par-
ticle is stationary with the chain anchored and entangled
permanently. But with the particle set into motion with
an average velocity V(¢) and the entanglement (link) with
the background chains at » =R +a released while moving
with an average velocity u(¢) (Fig. 1), Eq. (6) is modified
to

Fo=aK- [ dr'yt =1 )[w(R +a)d, )=V . @)

Here ¢(t) is the memory function descriptive of disen-
gagement of the background chains. We assume in con-
sistency with our boundary model elaborated below that
the ¥(¢) is the average portion of a chain in bulk that
remains at the time ¢ in its initial entanglement con-
straints, as is given by the theory of Doi and Edwards [2]:
_pt

Td

©

)=

p=1p7T

exp (8)

Here the p runs over odd integers, and

gl N3 b4
Tq= BT 9)
kg TR,
is the largest reptational relaxation time, §; is the Rouse
friction coefficient on a segment, N is the number of seg-
ments per polymer, and R, is the (primitive) chain length
between adjacent entanglements. All the parameters in-
volved in Eq. (9) pertain to chains in the bulk.

To further clarify the meaning of Eq. (7), consider the
short time (¢ <<7;) at which the ESC remains engaged
with a background chain. At this short time, ¥(¢)~1 and
Eq. (7) can be read as the elastic force

F~aK-8x(t) , (10)

with 8x(¢)= f ou(z')dt’ denoting the displacement by
which the ESC is drawn. On the other hand, for long
time, steady state, Eq. (7) is reduced to a frictional force

7=aﬁ-¢D(u—V) , (11)

where 7, is the relaxation time given by
2
= et = ——-—77'
™ fo Wnde =Ty (12)

Equation (11) is the basic equation we used for calculat-
ing steady-state diffusion constant [3]. Since 7, depends
strongly upon N, namely, 7,~N3 according to the
theories of de Gennes [1] and Doi and Edwards [2] the
frictional force on the particle is indeed dominated by
ESCs (i.e., by entanglements) for long chains and is given
by Eq. (11). Evidently, Eq. (7) interpolates the extremes
of elastic and viscous forces and, of course, display the in-
termediate viscoelastic behavior that depends upon the
time scale of the particle motion.

The validity of the force, Eq. (7), is restricted to ¢t > 7,
with 7, denoting the time for onset of entanglement con-
straints. On the other hand, for times ¢ < 7,, Rouse seg-
mental friction on the particle together with other possi-
ble small molecular relaxation mechanisms should be in-

cluded for the total friction on the particle. In develop-
ment of our theory we confine ourselves to the case ¢ > 7,
to assure that the ESCs play a dominant role in affecting
dynamics of the particle.

In our MBL model, we treat the distant polymers
beyond the boundary layer (r >R +a) as a viscoelastic
continuum. With the continuum description extrapolat-
ed to the outer boundary S, (Fig. 1), the force per unit
area on S, over the particle, then, is to be given by the
hydrodynamic stress —&fi. In our model, this is equat-
ed to the chain dynamical force per unit area of S, Eq.

¥
aﬁ-fo‘dz'¢(t—t')[u((R +a)a,t)—V(t")]
=—&((R+a)n,t)n. (13)

With the average velocity of entanglement (link) u at
r=(R +a)i identified as the velocity u of the polymer
continuum (at the same point) that appears in the stress
tensor &((R +a)f,t) [see Eq. (20)], Eq. (13) is regarded
as the generalized boundary condition to be met by u on
the outer boundary S,. This equation provides a
machinery to calculate the viscoelastic response of the
background polymers to the particle motion, especially
the velocity field u(r,¢) in terms of the average particle
velocity V(¢), incorporating the interface chain effect in a
self-consistent way, as shown next.

III. VISCOELASTIC RESPONSE
OF AN ENTANGLED POLYMER CONTINUUM
TO THE PARTICLE MOTION

In this section, we present a set of coupled hydro-
dynamic equations for the viscoelastic polymer media in
the linearized forms. And then we solve them using the
generalized boundary condition, Eq. (13), for the
frequency-dependent friction coefficient {(w) and finally
the velocity autocorrelation function (VAF) C(¢) defined
by Eq. (45).

In a low-wave number (hydrodynamic) description, the
state of a fluid is completely specified by the hydro-
dynamic fields. With the fluctuation of temperature
neglected, the fields are the mass density p(r,?) and the
fluid velocity u(r,?) which are coupled to one another by
continuity equations

gt—p(r,t)+v-{p(r,t)u(r,t)}=0, (14)

%{p(r,t)u(r,t)} +V-{p(r,t)u(r,t)u(r,z?)

+&(r,1)}=0. (15)

Since the linear transport—translational diffusivity in
this case—is investigated, it suffices to consider the
linearized version of the coupled equations for deviations
from equilibrium

dp(r,2)=p(r,t)=peq » (16)
Su(r,t)=u(r,t) , (17)

which are
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%Sp(r,t)'Fpqu-u(r,t):O : (18)
peq%u(r,t)+v-&"(r,t)=0. (19)

Here p., is the equilibrium mass density of the fluid
which will be denoted by p hereafter.

For Newtonian fluids, the stress tensor & is given by
the following constitutive equation:

aij(r,t)zﬁp(r,t)ﬁ,-j—nBV-u(r,t)8,-j
—n{Vu;(r,0)+V,u,(r,t)
—3Veu(r,1)8;} , (20)

where 8p(r,t) is the linear deviation of pressure and 7
and 7% are the constant shear and bulk viscosities. The
fluid described on molecular relaxation times shows the
viscoelastic behavior and then the stress in Eq. (20) is re-
placed by

oyy(r,0)=8p(x,1)8; — [ d’[n"(t—1")V-u(r, 18]
—fotdt'[n(t—t’){Viuj(r,t')+Vju,-(r,t')
—2V-u(r,1")8;}1, (21)

where the shear- and bulk-relaxation modulus 7(¢) and
1B(¢) can be given from molecular theories. For a liquid
of entangled polymers, we employ the Doi-Edwards
theory [2], according to which the shear-relaxation
modulus is given by

n(t)=Gy(t) , (22)

where G is the plateau modulus and ¥(z) is the
reptational-relaxation function given earlier by Eq. (8).
There seems to be no theory available, however, for the
bulk-relaxation modulus, which has not been incorporat-
ed in most of the hydrodynamic calculations using the
condition of incompressibility, V-u=0. We need in our
viscoelastic study of polymeric liquid to incorporate
compressibility, which gives rise to a longitudinal sound
mode. As discussed in the similar study by Zwanzig and
Bixon [6] of the atomic VAF in simple fluids and as will
be shown in this paper, this effect appears to be non-
negligible. We assume that this relaxation occurs on a
similar molecular mechanism, namely, reptation

75()=GBy(1) . (23)

Here G2 is the bulk modulus the system were to have if
all the entanglements are replaced by permanent
crosslinks.

At times much shorter than 7, the relaxation time of
¥(1), Eq. (21) is replaced by

0;;(r,1)="8p(r,)8;, — GPV-8x(r,1)8,
—G{V,8x;(r,t)+V,;6x;(r,¢)
_%V'Sx( r,t )8,]} s (24)

which is the relation between the stress and strain
V6x(r,t) (8x is the displacement) for an element in an

elastic solid continuum. It is clear that, at such short
times, the entanglements are not released but act as
crosslinks, yielding the moduli G and G2. Then, the cou-
pled hydrodynamic equations become the wave equations
for longitudinal and transverse sounds in the elastic solid.

In solving the viscoelastic hydrodynamic equations, it
is convenient to use the Laplace transform

u(r,€)=f0°°u(r,t)e~“dt s (25)

where €=~ —iw (apart from a small positive real part) in
the language of the Fourier transformation

u(r,0)= [ u(r,t)e“dr . (26)
The Laplace transforms of Eqgs. (18) and (19) are
—edple)=pV-ul(r,e) 27
= &2 4 B
peu(r,e)= c +—3—n(e)+n (e) {VV-u(r,e)
—n(e)VXVXu(r,e) , (28)

where we assumed that the fields (deviations) are zero at
t =0, i.e., that the fluid is at equilibrium initially and used
the relation

Vép(r,t)= [_ap_
9p

Vép(r,t)=c*Vdp(r,t) , (29)
T

with ¢ =1/ (dp /3p); denoting isothermal sound velocity.

Taking a divergence, and then a curl on Eq. (28), we
can decouple the longitudinal velocity field g; =V -u from
the transverse field g, =V Xu to have

V 2%g,(r,e)=k}g,(r,€) , (30)
Vg, (r,e)=klg,(1,€), 31)
where
2
ki = c2+e/p{§:/(e)+173(e)} 32
and
kp=—P (33)

fogle) T
The general forms of g; and g, that couple to the particle
average velocity V() linearly are

gi(r,€)=h,(r,e)i-V(e) , (34)
g/ (r,e)=h,(r,e)ixXV(e), (35)

where 1 is the unit vector of position vector r. For these
forms of g; and g, to be solutions to the Helmholtz equa-
tions [Egs. (30) and (31)], h; and A, should be the
modified spherical Bessel functions of the second kind
and of the first order [7]. Therefore,

N

—k,r,\ -
'V 36
w2 T e n-V(e) (36)

g;(r,e)= A(e)
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and

g.(r,e)=B(¢)

—‘ “MaxVie) . 37

In terms of Egs. (36) and (37), u(r,€) is obtained

K
Ol A(ENR +a)x *+x e

=—2A4(e)3x; *+3x, 3 +x; Ye
akK

G

01— A(e)R +a)3x;, *+3x, 3 +x; e

K, —4 -3 -2y,
[A(e)(R+a)(2x; "+2x; "+x; “)e

= A(e)(18x; *+18x; 3+ Zx, 2 +4x, e

2 B —x
+ CPLEXTE) 4y xy24x e
n(€)

’

x,(€)=k,(€)(R +a)

x,(e)=k,(e)(R+a) .

IV. VELOCITY AUTOCORRELATION FUNCTION
(VAF) OF PARTICLE

Once we determine the velocity field u(r,z) of back-
ground polymers, we can calculate the average force act-

—4mn(e)(R +a)*
3

tle)= 2B(€)(x, 2 +x, Ve

where 4 and B are determined from the boundary condi-
tion, Egs. (39) and (40).

The equation of motion for the particle can be written
as the generalized Langevin equation

d
M a Vi(z

The £(¢) is the memory function obtained as the inverse
Laplace transform of Eq. (43), f(¢) is the stochastic force
[rapidly varying chain segmental force which is not in-
cluded in the frictional force [Eq. (42)], and M is the par-
ticle mass. For the velocity autocorrelation function
(VAF) of the particle defined as

== [ gt =V + 10 (44)

C(t)=1{V(¢)-V(0)) , (45)

TN _B(e)R +a)(x, *+x, 3 +x, e

" —B(e)(R +a)(2x, *+2x, e

—B(e)(18x, *+18x, 3 +7x, 2 +x,!

T + A (6)(x1_2+x1_

u(r,e)=k; 2Vg,(r,e)—k, 2V X g,(r,€) . (38)

For complete determination of the flow field u(r,z), it
is necessary to find A(e) and B(e€) in Egs. (36) and (37)
from the generalized boundary condition Eq. (13), which
can be written as coupled linear equations

]

X

4+ B(e)(6x, t+6x, +3x, 24x, e (39)

4+ B(e)(R +a)3x, *+3x, 3 +x, e ]

1]

X

e Tt

ing on the particle by integrating the stress over the outer
boundary surface, which is

,€)-dS
e)98 u(r,e)—V(e)}ds . (41)

The second equality in the above equation is due to Eq.
(13). The result of the calculation is given as
F(e)=—¢(e)V(e) , 42)

with the frequency-dependent friction coefficient

— 2 B
b, |4, c’p/etne) ] , @

3 n(e)

where ( ) is the average over an equilibrium ensemble.
We note { f(z)-V(0)) =0 to obtain

M—C(t = [larsu—can . (46)

Then one obtains the Laplace transform of the VAF

clo=— ) kaT/M 47)
T eF O /M etéle)/M (

and the associated Fourier transform, called the power
spectrum,
kgT /M

o) R t(e=—iw)/M - “8)
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Inserting Eq. (43) into Eq. (48) and inverse-Fourier trans-
forming the latter, we finally obtain VAF C(z).

The long-time behavior of VAF

The explicit analytic expression for C(w) for arbitrary
frequencies is too complicated to be presented, but will be
given only for the limiting cases of low frequencies and
high frequencies. At low frequencies, the dominant con-
tribution to £(€) is expanded in powers of €!/?

Le)=Cy(1+g, € +get+g; €2+ ). (49)

The first term is the zero-frequency friction coefficient
corresponding to the steady-state friction coefficient ob-
tained earlier by us [5]

éhge
- , (50)
§0 §h+§e
where
=6mn(R +a) |1 ud (51)
Sn=bmmolR+a) 1= FK, Gy |7
2+
£,=4m(R +a)ar K0+%—+—$K1 (52)

In the above, y=Koarp(R +a)/my=R /R,
R,. =G /akK, n19=Grp is the zero-frequency shear viscosi-
ty and all the other parameters are already introduced in
Sec. II. As discussed earlier, the friction coefficient re-
covers, in the large-particle limit ¥ — o the Stokes fric-
tion

So—>6p —6mnoR (53)

of the usual hydrodynamics using no-slip boundary con-
dition (BC). On the other hand for small-particle limit
v —0 it approaches to a reasonable expression

So—6,—4m(R +a)Varp(Kg+1K|)=Kmp, ,  (54)

which is just the friction due to the elastically effective
surface chains attached to the particle. Equation (54)
defines the overall spring constant K, of the elastic force
on the particle by ESCs.

The next higher order term

1 . 1n_—3n
81,2 617'§0p Mo (55)

in {(e) [Eq. (49)] contributes to the C(w) [Eq. (48)] for
low frequencies

2k, T
Clow)~—2
0

(I_VEgl/zwl/z) (56)
yielding, upon inverse-Fourier transformation, the long-
time analytic behavior,

kT
ct)~-2

(ve) ™32 ast—> o , (57)

where v=1,/p is kinematic viscosity. The above long-
time tail is a universal feature arising from the viscous

hydrodynamic backflow in the form of vortex [8] but it is
remarkable that, because of the very high viscosity
19~ N, the tail is much weaker compared with that of a
particle in a small-molecule fluid. This feature is con-
trary to the expectation one might (falsely) have that the
disengagement via reptation gives rise to a sustained
long-time tail, in a liquid of entangled polymers. What
happens, in fact, is that the highly viscous background
damps the propagation of large-scale hydrodynamic feed-
back to a very feeble level. This feature of entanglement
constraint effect regardless of particle size and mass be-
comes more obvious when the higher terms g, g3/, . . -
in §(€) [Eq. (49)] are considered as below.

It suffices to discuss the cases R >>a where g, and g3,
can be reduced to relatively simple forms

So 2mpR3
=—7p— (58)
&1 P 12mRpe? 3%
T 1/2,.,—3/2 ctz
33/2:_1_210 n Tpbo 1+2? . (59)

Here ¢, =(G /p)!/2. The last term of Eq. (58) represents
the effect of buoyance (or virtual mass) noted by Bous-
sinesq in 1903 [9] in an incompressible Newtonian fluid.
While this term tends to reduce M by half the mass of
liquid displaced by the particle and thus enhance particle
mobility, the other two (negative) terms characteristic of
compressible polymer liquids retard it. The latter, which
is proportional to viscosity, predominates for most of the
cases where the particle is not extraordinarily large. The
term g, ,, gives rise to a long-time tail of ¢ ~>/2
kyT -t

L ()32, (60)
P

Tp

C(t)

Again, as discussed before, this tail is also suppressed be-
cause of its dependence on viscosity. All in all, the long-
time behaviors we found here imply that the polymer en-
tanglements retard the particle motion enormously even
after the reptation time.

The short-time approximation and comparison
with the numerical results

The strong decay of VAF at long times as revealed in
our results suggests that the relaxation dynamics of the
particle is governed predominantly by its short-time
behavior. This is indeed supported by Figs. 2 and 3 (full
curves) which represent the numerical results of our mod-
el theory for large particle R =10*R s and small particle
R =10R, respectively.

We took the numerical values from the experimental
data for polystyrene melt at 200 °C which is well above its
glass transition temperature: the mean number of mono-
mers between the entanglement N, =174, the primitive
chain length R, =92 A, Kuhn step length b~7 A, Rouse
friction coefficient §;=~1.12X 1077 dynsec/cm, plateau
modulus G ~2.67X10° dyn/cm? reptation time
Tp=4X 107 12N3 sec, the steady-state viscosity 17=1.08
X 1075N3 dynsec/cm?. To see the trends, we tentatively
considered N =10* and put the particle mass density Py



t (psec)

FIG. 2. The VAF C(¢) of a large particle (R =10°R; or
¥ =100). See the text for the other parameters involved.

to be same as the polymer liquid density in the bulk
which we put as p=1 g/ cm? and, for the boundary layer
parameters R, =R, and a~(1/7.76)R, .

With variables chosen this way, Fig. 2 pertains to the
case of the large particle with y ~100, where the Stokes
friction [Eq. (53)] applies. In this case the VAF shows a
decay to the negativity leading to a caging effect at short
times (much shorter than 7). This is not much different
except for the time scale from the hydrodynamic result of
Zwanzig and Bixon [6] for an atom in simple fluid. The
behaviors of VAF as shown in Fig. 2 appear to be typical
of the particle of all but small sizes. Figure 3 (solid
curve) is the case of the small particle with y =0.1. Since
P=p,, this case pertains to the very light particle. Unlike
in Fig. 2, the VAF is characterized by the rapid oscilla-
tions which is underdamped at times much shorter than
Tp-

As an attempt to understand the physics behind the
short-time behaviors of VAF analytically, we determine
the high frequency dynamic friction coefficient by ex-
panding the bracket in Eq. (43) to the order linear in € !
assuming et >>1

se) =Lk [1—(er) ")

1€ 1

(61)

G " lt(er) '

FIG. 3. The VAF C(t) of a small particle (R =10R; or
¥ ==0.1). See the text for the other parameters involved. [Dot-
ted curve is the short-time approximation, Eq. (66).]
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Here K is the overall spring constant defined by Eq.
(54). The 7, is given by

172 5 5712
T‘1=9£ g 14 i+c_ﬂ
d G |p 2 3 G
1 —
=—R—c,[%+c,c, n, (62)
(4
where
iG+Ge |
¢;= |c? , (63a)
p
G 172
= |= (63b)
P

are the longitudinal and transverse sound velocities and

_ G —1
= —= R
R="Kk"Y

is a crossover distance introduced earlier.

In getting these expressions, we assumed that, as in the
cases with Figs. 2 and 3, the size of the particle is much
larger than the boundary layer (R >>a) so that we have
K,=K;=K [Eq. (5)]. The many usual situations of the
colloidal particles with R >0.1 u and a 100 A satisfy
this condition. For the short-time regime we consider
here, the polymer chains remain entangled and thus act
collectively as an elastic solid. The relaxation modulus
1n(t)=Gy(t) is nearly flat for ¢t > 7, with the time of the
plateau region in the order of 7, ~N?% so we may re-
place, without appreciable errors, 7(e) by

__ G
€+7'51 '

n(e) (64)

Inserting Eq. (61) with Eq. (64) to Eq. (47), we obtain, for
(er,)~! << 1, the Laplace transform
M

C(G):kBT/W . (65)

e+ -
e+t

Here, 7 !'=7,'+7,!, which can be replaced by 7, '

since 7 >>7;. Equation (65) is in the form of a contin-
ued fraction representation truncated at the second or-
der. As well known in the theories of simple systems
[10], this representation is a choice method for describing
the short-time dynamics. Equation (65) is identical in
form to the model of Berne, Boon, and Rice for an atom
in dense simple liquids where the elastic constant K is
given in terms of the interatomic potential [11].

Upon an inverse Laplace transform of Eq. (65) the
VAF is obtained as

kT _
)= ;4 [cosQt +1(Qr,) " IsinQele 2™, (66)
where
Q=(wp—47, ) 67

involving the natural frequency of oscillation
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In order to appreciate the underdamped oscillation of
C(t), let us consider the limit e— oo, in which

K

s

t(e)=

€

and the force [Eq. (42)] becomes an elastic one induced by
a displacement 8X of the particle,

F(t)=—K 6X(t) . (68)
Then the VAF is given as
cle=—2 LM 69
€)= Ks/M ’ (69)
+ €

whose inverse transformation yields undamped oscillator
behavior for C(z) with the frequency @, This means that
the instantaneous response of the background polymers
to the particle set into motion at £ =0 is the elastic force
with the spring constant K, [Eq. (54)] provided by its im-
mediate neighbors, namely, ESCs.

In a short-time interval, 0 <t S 7, the response from
the more distant chains, which are still elastic since they
remain entangled, comes into play to affect particle
motion. A close examination of Eq. (62) reveal that 7 is
about the time during which the transverse sound passes
the crossover distance R,=G /aK. During this short
traversal time, the local disturbance (sound wave) such as
compression at the front and expansion at the rear of par-
ticle are incurred over the distance ~R_.. The short-time
solution of u(r,?) obtained from Eq. (38) is

¢ o —
u(r,t)=y Tt{l——nn}'SX t—rcR
t
2c -
+Lnn-6X 't—’ R (70)
r ¢

Thus the disturbance at r is delayed by the time which
the sound takes to traverse from the particle to point r.
This delayed response yields a memory effect on the part
of the particle, a damping on its motion. The correlation
function is obtained by inserting Eq. (61) to Eq. (47)

G=) ey, @)
-

s

t
=—w%f0dt'exp

The damping couples with the oscillation of natural fre-
quency g, leading to the underdamped oscillation
behavior for C(t), as observed in Eq. (66).

Shown in Figs. 4 and 5 are the power spectra C(w) of
the two cases considered in Figs. 2 (large particle) and 3
(small particle), respectively. The dotted curves are the
first order high frequency approximation [Eq. (66)]. For
frequencies higher than the peak frequency o~ 108 sec ™1,
the approximation appears to be valid for the small parti-

C(w)/c(w - 0)

10

101!

w (sec™)

10 10° 10° 107 10°

FIG. 4. The power spectrum of the VAF (large particle)
given in Fig. 2. [Dotted curve is from the short-time approxi-
mation, Eq. (65).]

cle (Fig. 5). This is reflected in Fig. 3 where the approxi-
mation (dotted curve) for ¢ $ 10 % sec is shown to be in a
close agreement and for other time regimes a reasonable
agreement with the full theory. On the other hand for
the large particle (Fig. 4), the agreement is reached for
high frequencies w2 108 sec™!. For C(t) (Fig. 2), the ap-
proximation is only valid for ¢t $1078 sec which is too
short a time region to be seen here in C(z).

Why does the approximation Eq. (66) yield a reason-
able result for the small particle while it does not for the
large particle except for a very short time? Recall that
the approximation is valid for o7, >>1. For a small par-
ticle it is easy to understand the short-time response of
the chains in its vicinity plays the dominant role in
affecting its dynamics, i.e., underdamped harmonic
motion. But for the larger particle, the response from the
background is more long ranged involving more distant
chains for longer time. Furthermore, the large particle in
our case means heavy particle, for which it is shown that
the oscillation frequency  [Eq. (67)] tends to be
suppressed.

With more terms in (e7,) ! expansion we can expect
to achieve the better convergence, because VAF is
governed essentially by short-time dynamics with ¢ <<7,.

Clw)/Clw — 0)

w (sec™!)

107 108 10°

FIG. 5. The power spectrum of the VAF (small particle)
given in Fig. 3. [Dotted curve is from the short-time approxi-
mation, Eq. (65).]
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Therefore it seems reasonable to say that the caging of a
particle, regardless of its size, is enhanced by the sound
wave of the surrounding elastic media on various scales.

Diffusion constant: interplay of short-time
and long-time dynamics

The diffusion constant D of the particle is given by
C(e—0) [Eq. 47)]

kgT .
D= (Einstein relation)
o
= [ arc) . (72)
From the §, [Eq. (50)], we find
D=D,+D,, (73)
where
kpT kpT
D,= B , D,= B
gh ge

This additivity, as well as the limiting behaviors of the
diffusion constant, was discussed in our earlier work [3].
Now with the VAF at hand, these features can be better
appreciated.

For a particle very small y <<1 the diffusion constant
has the limiting behavior

kyT
Ce
kT

— R
KSTD

D—D,=

(74)

in accordance with Eq. (54). This is entirely from the
elastically effective surface chains, the immediate neigh-
bors to the particle, which are disengaged during the time
7p. The VAF satisfies the equation

aC(t)
ot’

=—a} [ drp—1)C(r) (75)

and, since ®,=V'K,/M >>75!, has the oscillatory

behavior Bvith slow damping: using an approximation
—t/T .

P(t)=e P consistent with Eq. (64),

kg

T —t/27
cos(wyt e b,
M 0

C(t)= - (76)

In this case of y <<1, the disturbance from the more
distant chains in the background is vanishingly small as
implied in its short-time behavior [Eq. (70)]. For the
large particles, however, the response from the more dis-
tant chains becomes important. In the case of a very
large particle, y >>1(R >R_,=G /aK), we obtain the
Stokes-Einstein diffusion

kyT
6mmR

In this case, the diffusivity is entirely irrelevant to the de-
tails of particle-polymer interface, but is determined by

D—D,=

the hydrodynamics using a no-slip BC. (It should be not-
ed that this case precludes the large particle with a very
small a in which y is not very large. What happens in
the latter case is the slippage of flow of entangled poly-
mers on particle surface [12-14].) As discussed before,
the change of VAF is largely governed by short-time dy-
namics but, interesting enough, the time integral which
determines diffusivity is mostly from long-time domain.
This is due to the fact that, at long times, despite its very
small magnitude, C(¢) is characterized by the enormously
slow decay.

For the intermediate particle sizes, the diffusion con-
stant appears as the sum of two contributions D, and D,
[Eq. (73)]. What underlies in this remarkable additivity is
that the two modes of dynamical processes mentioned
above for the two limiting cases are operative on distinct
time scales. Thus one can decompose V()

V() =V, (£)+V, (1) (77)

into two contributions from short-time ESC effect, V,(#)
and long-time hydrodynamic effect, V,(¢). Since V()
varies slowly compared and does not correlate with
V.(t), the VAF is approximately given as

C(1)=C,(1)+C, (1), (78)
where
C.(1)=1(V (1)-V,0)), (79)
Co()=1(V,(1)-V,(0)) . (80)

The time integration of Eq. (78) yields indeed the
diffusivity in additive form [Eq. (73)].

V. SUMMARY AND CONCLUSION

In investigating the dynamics of the particle in melt of
entangled polymers, we employed the microscopic
boundary model, which, briefly recapitulated in Sec. II,
enables us to calculate the dynamic response of the back-
ground polymers to the particle motion. According to
the model, the short-range response is described by sta-
tistical dynamics of the elastically effective surface chains
attached on the particle and engaged to the entangle-
ments, which are coupled to the long-range dynamic
response of the more distinct chain described as a visco-
elastic continuum. Using this generalized hydrodynamic
scheme, we obtained the velocity autocorrelation func-
tion (VAF), which has been analyzed in depth for long-
time and short-time regimes. In the long times, the VAF
has the long tail ¢t ~3/2 and ¢ ~%/? with positive amplitudes
which are significantly suppressed by entanglement con-
straints. In the short time, the polymers respond to an
elastic solid due to the constraints, and the theory shows
delayed distortion of the elastic media near the particle
tends to enhance caging. The dominant variation in VAF
occurs only at short times ¢ <7, whether it is under-
damped oscillation as found for the small particle (Fig. 3)
or it is like Fig. 2 as found for the large particle.

For the time integral of VAF, which is a diffusion con-
stant, however, the long-time effect is found to be
significant; for a particle much larger than the crossover
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length R, the diffusivity is the Stokes-Einstein hydro-
dynamic result of the usual no-slip B.C., which is entirely
insensitive to microscopic details of interface and short-
time dynamics and thus affected largely by long-time
behavior. For a small particle, the diffusion constant is
largely given by the effect (disengagement) of interface
chains. For an intermediate particle, the interplay of
short-time and long-time dynamics is found to yield the
diffusivity as the sum of each contribution. The general-
ized hydrodynamic scheme developed here can also be
extended to the more complex situations involving chain
segmental fluctuations and solvent dynamics. The gen-
eral ideas derived in this work, namely, the long-time hy-
drodynamic feedback yielding long-time tails as well as
short-time surface chains and sound wave effects leading
to enhanced caging will retain their validity.

In conclusion, the microscopic boundary layer model

provides a tractable and powerful analytical method for
studying the dynamics of particles coupled to the entan-
gled polymers on various time scales. The model shows
that the short-time dynamical effects of the chains ad-
sorbed on the particle became more important as the par-
ticle gets smaller. The particle can be a sensitive probe to
the dynamics of the polymers, which shows an unusual
interplay of elastic response at short times and viscous re-
laxation via reptation of the polymer chains at long
times.
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